\begin{subequations} \label{num3} \beq U_i^\alpha-u_i^\infty(x^\alpha)=\frac{F^\alpha_i}{6\pi \mu a}+(1+\frac{1}{6}a^2\nabla^2)u'_i(x^\alpha), \eeq \beq \Omega_i^\alpha-\Omega_i^\infty=\frac{Li^\alpha}{8\pi \mu a^3}+\frac{1}{2}\varepsilon{ijk}\nabla_ju'k(x^\alpha), \eeq \beq -E{ij}^\infty=\frac{S{ij}^\alpha}{(\frac{20}{3})\pi \mu a^3}+\left(1+\frac{a^2}{10}\nabla^2\right)e'{ij}(x^\alpha), \eeq \label{batandg} \end{subequations}
@TheBrick(Tommy) started
London Fixed Gear and Single-Speed is a community of predominantly fixed gear and single-speed cyclists in and around London, UK.
This site is supported almost exclusively by donations. Please consider donating a small amount regularly.
\begin{subequations}
\label{num3}
\beq
U_i^\alpha-u_i^\infty(x^\alpha)=\frac{F^\alpha_i}{6\pi \mu a}+(1+\frac{1}{6}a^2\nabla^2)u'_i(x^\alpha),
\eeq
\beq
\Omega_i^\alpha-\Omega_i^\infty=\frac{Li^\alpha}{8\pi \mu a^3}+\frac{1}{2}\varepsilon{ijk}\nabla_ju'k(x^\alpha),
\eeq
\beq
-E{ij}^\infty=\frac{S{ij}^\alpha}{(\frac{20}{3})\pi \mu a^3}+\left(1+\frac{a^2}{10}\nabla^2\right)e'{ij}(x^\alpha),
\eeq
\label{batandg}
\end{subequations}