You are reading a single comment by @duncs and its replies.
Click here to read the full conversation.
-
Then look at the VB in the sheet they provide
Function E_N_to_Lat(East, North, a, b, e0, n0, f0, PHI0, LAM0) 'Un-project Transverse Mercator eastings and northings back to latitude. 'Input: - _ eastings (East) and northings (North) in meters; _ ellipsoid axis dimensions (a & b) in meters; _ eastings (e0) and northings (n0) of false origin in meters; _ central meridian scale factor (f0) and _ latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees. 'REQUIRES THE "Marc" AND "InitialLat" FUNCTIONS 'Convert angle measures to radians Pi = 3.14159265358979 RadPHI0 = PHI0 * (Pi / 180) RadLAM0 = LAM0 * (Pi / 180) 'Compute af0, bf0, e squared (e2), n and Et af0 = a * f0 bf0 = b * f0 e2 = ((af0 ^ 2) - (bf0 ^ 2)) / (af0 ^ 2) n = (af0 - bf0) / (af0 + bf0) Et = East - e0 'Compute initial value for latitude (PHI) in radians PHId = InitialLat(North, n0, af0, RadPHI0, n, bf0) 'Compute nu, rho and eta2 using value for PHId nu = af0 / (Sqr(1 - (e2 * ((Sin(PHId)) ^ 2)))) rho = (nu * (1 - e2)) / (1 - (e2 * (Sin(PHId)) ^ 2)) eta2 = (nu / rho) - 1 'Compute Latitude VII = (Tan(PHId)) / (2 * rho * nu) VIII = ((Tan(PHId)) / (24 * rho * (nu ^ 3))) * (5 + (3 * ((Tan(PHId)) ^ 2)) + eta2 - (9 * eta2 * ((Tan(PHId)) ^ 2))) IX = ((Tan(PHId)) / (720 * rho * (nu ^ 5))) * (61 + (90 * ((Tan(PHId)) ^ 2)) + (45 * ((Tan(PHId)) ^ 4))) E_N_to_Lat = (180 / Pi) * (PHId - ((Et ^ 2) * VII) + ((Et ^ 4) * VIII) - ((Et ^ 6) * IX)) End Function Function E_N_to_Long(East, North, a, b, e0, n0, f0, PHI0, LAM0) 'Un-project Transverse Mercator eastings and northings back to longitude. 'Input: - _ eastings (East) and northings (North) in meters; _ ellipsoid axis dimensions (a & b) in meters; _ eastings (e0) and northings (n0) of false origin in meters; _ central meridian scale factor (f0) and _ latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees. 'REQUIRES THE "Marc" AND "InitialLat" FUNCTIONS 'Convert angle measures to radians Pi = 3.14159265358979 RadPHI0 = PHI0 * (Pi / 180) RadLAM0 = LAM0 * (Pi / 180) 'Compute af0, bf0, e squared (e2), n and Et af0 = a * f0 bf0 = b * f0 e2 = ((af0 ^ 2) - (bf0 ^ 2)) / (af0 ^ 2) n = (af0 - bf0) / (af0 + bf0) Et = East - e0 'Compute initial value for latitude (PHI) in radians PHId = InitialLat(North, n0, af0, RadPHI0, n, bf0) 'Compute nu, rho and eta2 using value for PHId nu = af0 / (Sqr(1 - (e2 * ((Sin(PHId)) ^ 2)))) rho = (nu * (1 - e2)) / (1 - (e2 * (Sin(PHId)) ^ 2)) eta2 = (nu / rho) - 1 'Compute Longitude X = ((Cos(PHId)) ^ -1) / nu XI = (((Cos(PHId)) ^ -1) / (6 * (nu ^ 3))) * ((nu / rho) + (2 * ((Tan(PHId)) ^ 2))) XII = (((Cos(PHId)) ^ -1) / (120 * (nu ^ 5))) * (5 + (28 * ((Tan(PHId)) ^ 2)) + (24 * ((Tan(PHId)) ^ 4))) XIIA = (((Cos(PHId)) ^ -1) / (5040 * (nu ^ 7))) * (61 + (662 * ((Tan(PHId)) ^ 2)) + (1320 * ((Tan(PHId)) ^ 4)) + (720 * ((Tan(PHId)) ^ 6))) E_N_to_Long = (180 / Pi) * (RadLAM0 + (Et * X) - ((Et ^ 3) * XI) + ((Et ^ 5) * XII) - ((Et ^ 7) * XIIA)) End Function
Should get you started...
Converting Easting/Northing (OS National Grid) to degrees using a formula, is this possible? All I can find is a variety of online converters but I want to do a load through Excel.